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ABSTRACT 
This paper outlines recent work on the extension 
of constructal design to multi-objective systems.  
The optimization of two types of systems is 
investigated.  The first system is an electromagnet 
in which hot spot temperature must be minimized, 
and magnetic performance maximized.  The 
second type of systems consists of beams, that 
must provide at the same time great strength, and 
large time of survival in case of thermal attacks.  
In both cases, volume constraint is invoked.  We 
show how shape and structure are generated by 
the competition that takes place between the 
various objectives and constraints during the 
geometric optimization process. 
 
NOMENCLATURE 
B0 magnetic induction at the center of the 

coil, T 
D half-thickness of a cooling disc, m 
E elastic modulus, Pa 
G dimensionless magnetic parameter 
H beam profile, m 
j current density, A m–2 
k thermal conductivity, W m–1 K–1 
L length, m 
m shape parameter 
M moment, N m 
n number of cooling discs 
P total power dissipated, W 
q'' heat flux, W m-2 
q''' volumetric heat source, W m–3 
q~  dimensionless volumetric heat source 
r radial position, m 

r0 inner radius, m 
r1 outer radius, m 
t time, s 
T temperature, K 
T0 sink temperature, K 
V solenoid volume, m3 

x, y Cartesian coordinates, m 
Z thickness of elastic core, m 

Greek Symbols 
β coefficient characterizing yield stress 

temperature dependence, K-1 
δ beam deflection, m 
θ dimensionless temperature 
φ fraction of the volume occupied by the 

discs 
ρ electrical resistivity, W m A–2 
σ stress, N m-2 

Subscripts 
y yield point 

Superscripts 
~ dimensionless variables 
 
1. INTRODUCTION 

Imagining better and better designs has always 
been a central goal of engineering.  The first 
conceptual step of this process is to recognize 
what “better” means.  This step consists of 
identifying the objective, which is to maximize 
global performance, while acknowledging the 
global constraints.  This step must be made early 
in the designing process, before the system takes 
shape.  The geometry is the unknown.  In the 
pursuit of better global performance under 
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constraints, more efficient configurations are 
generated.  The view that geometry is generated 
by the pursuit of global performance under global 
constraints has been named constructal theory [1]. 

In earlier works, shape and structure were 
generated by addressing only one objective.  
However, even the simplest systems usually have 
more than one objective.  This calls for extending 
the constructal approach to multi-objective 
systems.  In this paper, we outline two problems 
to illustrate how this can be realized.   

The first system is an electromagnet.  Cooling 
must be provided to the magnet for managing heat 
generation, and at the same time, the designer 
faces magnetic performance requirement and 
volume constraint.  Beams are the second type of 
systems that we consider. As a mechanical 
structure, a beam must have a small deflection in 
the absence and presence of a thermal attack.  For 
both problems, we show how the optimal 
geometry emerges from the competition between 
the various objectives. 

 
2. OPTIMIZATION OF AN ELECTRO-
MAGNET 
 Figure 1 shows the front and side view of a 
solenoid [4-7].  It consists of several layers of 
wire wound around a cylinder of radius r0.  The 
coil outer radius and length are respectively r1 and 
2L.  When a current passes through the wire, it 
generates a one-dimensional magnetic field on the 
coil centerline.  However, because of the Joule 
effect, the current also generates heat, leading to a 
temperature rise.  For preserving the coil 
integrity, one should minimize the magnet 
temperature.  Furthermore, electrical resistivity of 
coil materials usually increases with temperature, 
leading to a more expensive to operate device.  In 
this section, we consider both requirements: 
intense magnetic field, and low temperatures. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Electromagnet geometric features. 
 

2.1. Magnetic Point of View 
 Consider a uniform current density j that 
flows in the winding.  The magnetic field is 
maximum at the origin (z = r = 0), and at that 
position is given by [2-3]: 
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The total power dissipated in the coil can be 
calculated by 
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Combining Eqs. (1) and (2), it is possible to write 
the magnetic field at the origin as: 
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The first term on the right-hand side of (3) is a 
constant.  The dimensionless function G depends 
only on the coil geometry, 
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Figure 2: Parameter G in the 1r

~ – L~  plane. 
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where the coil inner radius r0 has been used to 
non-dimensionalized the magnet dimensions (r0 is 
typically determined by the application where the 
magnet is used), 
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Eq. (4) is reported graphically in Fig. 2.  All the 
points on a constant-G line have the same 
magnetic performance.  In other words, for a 
given power P, all the designs represented by a 
constant-G line lead to the same magnetic field.  
The question is now which one leads to the 
smallest hot spot temperature, i.e. to the best 
thermal performance. 
 
2.2. Thermal Point of View 

Different cooling systems can be considered.  
Here we study the insertion of n high thermal 
conductivity discs of thickness 2D in contact with 
a cold reservoir at a temperature T0, Fig. 3.  The 
conductivity of the discs, k1, is assumed much 
larger than the one of the winding, k0, hence k~  = 
k1/k0 >> 1.  The function of the discs is simply to 
extract the heat generated in the coil and to lead it 
to the cold reservoir.  The fraction of the volume 
occupied by the discs is assumed to be fixed, 
 

L
nD

=φ  (6)

 
For compactness reason, we have φ << 1.  This 
also ensures that the presence of the inserts does 
not modify greatly the magnetic field, i.e. that Eq. 
(4) is valid.  The temperature profile can be 
estimated analytically or numerically by solving 
the conduction equation, 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Geometry of the cooling system. 
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where: 
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For example, based on the arguments that k1/k0 
>> 1 and φ << 1, it can be shown analytically [14] 
that the hot spot temperature is given by: 
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2.3. Combining Heat Transfer and Magnetism 

For all the designs with a given magnetic 
performance, i.e. all the points on a constant-G 
curve, we calculated the hot spot temperature 
either with analytical formula, Eq. (8), or with a 
finite element code [8].  We repeated this 
procedure for different values of n, the number of 
cooling discs.  In these calculations, φ was kept 
constant.  The optimal results are presented in 
Fig. 4 for different number of discs.  The hot spot 
temperature decreases as the number of discs 
increases.  The downside of this is that a more 
complex solenoid would have to be built. 
 
 
 
 
 
 
 
 
 
 

100k~=  
 
 
 
 
 
 
Figure 4: Minimum hot spot temperature as a 
function of the number of cooling discs. 

analysis (Gmax = 0.179) 

analysis (G = 0.15) 
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100k~=

100V~=
15.0G eq =

D~

D~

L~

A more refined approach consists of relaxing 
the assumption that φ << 1.  An equivalent G-
parameter that takes into account the presence of 
the discs can be used, because in fact, the discs do 
not contribute to the magnetic field generation.  
There is a clear tradeoff: when φ is too small, the 
coil is not cooled properly, when φ is too large, it 
is hard to reach large magnetic field.  The optimal 
is in-between.  For example, for n = 1, the 
equivalent G that takes into account the presence 
of the inserts is, 
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where: 
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Another step is to constrain coil volume, for 

the sake of compactness.  It is worth noting that 
L~  and D~  are now independent variables, because 
the percentage of the volume occupied by the disc 
(φ) is not fixed, but must be optimized.  The 
external shape features ( L~ , 1r~ ) are linked via the 
total volume constraint, Eq. (8).  Fixing Geq,n=1, P 
and V~  leaves only one degree of freedom.  We 
choose L~  as this degree of freedom. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5: D and r1 as a function of L. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Constrained V~  and Geq optimal results. 
 
 Figure 5 shows how D~  and 

1r
~  vary with L~ .  

All the designs of Fig. 5 are equivalent 
magnetically (Geq,n=1 = 0.15) and have the same 
mass or volume ( V~  = 100).  We want to find out 
which of these designs performs best from the 
thermal point of view.  To this end, we vary L~ , 
and solve Eq. (7) numerically.  The procedure is 
repeated for different values of n.  The results are 
presented in Fig. 6.  As n increases the hot spot 
temperature first drops dramatically, and then 
continues to decrease slowly.  The optimal ratio 
of the volume occupied by the high thermal 
conductivity material is also plotted in Fig. 6.   
 
3. OPTIMIZATION OF A BEAM TO FACE 
THERMAL ATTACK 

In this section, we combine heat transfer and 
structural analysis with the help of the constructal 
method: we study systems that must be me-
chanical ly  s t rong and,   a t  the same t ime,  
must retain their strength and integrity during 
thermal attack.  Mechanical structures become 
weaker and may collapse if they are exposed to 
intense heating [13, 15].   

The classical approach to providing a structure 
with thermal resistance against intense heating is 
by coating the structure with a protective layer 
after the structure has been designed.  Here, we 
propose to change the conceptual approach to 
optimal structures, away from the single-objective 
lessons of the past, and in line with the two-
objective morphing of structures shown in Ref. 
[9].  We illustrate this approach by optimizing 
beams in pure bending exposed to sudden heating.  
The solid structure is penetrated by time-
dependent conduction heating.  We show that the 
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mechanical and thermal objectives compete, and 
that this competition generates the optimal 
geometry of the system. 
 
3.1. Stiffness Point of View 
 Consider a beam simply supported at each 
end, Fig. 7.  The beam geometry is two-
dimensional, with the length L and symmetric 
profile H(x).  The total load F [N/m] is distributed 
uniformly over the beam length L.  The force F is 
expressed per unit length in the direction 
perpendicular to the plane of Fig. 7.  The weight 
of the beam is assumed to be negligible in 
comparison with the load.  The beam profile is 
sufficiently slender so that its deformation in the y 
direction is due mainly to pure bending. 
 The beam is initially isothermal at the ambient 
temperature T∞, where it behaves elastically 
throughout its volume.  The modulus of elasticity 
is E, which for simplicity is assumed constant.  
Thermal attack means that at the time t = 0 the 
beam is exposed on both surfaces to the uniform 
heat flux q".  Temperatures rise throughout, but 
they rise faster in the subskin regions, Fig. 8.  
These are the first regions where the material 
behavior changes from elastic to plastic.  The last 
to undergo this change is the core region of 
thickness Z(x), in which the material behaves 
elastically. 
 The total bending moment in a constant-x 
cross-section is (e.g., Refs. [10-11]) 
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where W is the beam length in the z direction, 
which is perpendicular to the plane of Fig. 7.  
This moment is balanced by the moment due to 
the tensile and compressive stresses (σ) that are 
present in the cross-section.   When σ is less than  
 
 
 
 
 
 
 
 
 
 
 
Figure 7: Beam geometry.  

the yield stress σy, the material behaves 
elastically.  The yield stress decreases as the local 
temperature increases.  For simplicity, we assume 
a linear model for the effect of T on σy, 
 

)TT(1 ref
ref,y
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where the β coefficient is a property of the 
material, and Tref is a reference temperature, such 
that σy,ref = σy(Tref).  It is convenient to set the 
reference temperature to the ambient temperature, 
Tref = T∞ and σy,ref = σy,∞.  In the elastic core the 
stresses vary linearly (e.g., Ref. [10-11]), 
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y
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In this expression σy is the yield stress at y = ± 
Z/2, which is associated with the instantaneous 
temperature at that location.  We assume that in 
the peripheral regions outside y = ± Z/2 the 
material is perfectly plastic, so that σ is equal to 
σy(T), where T is the local temperature. 
 Figure 8 summarizes qualitatively the 
distribution of stresses in the cross-section, at a 
time when plastic regions are present, Z < H. In 
this model we accounted for the fact that in the 
beginning there is a time interval when the entire 
beam is elastic, and the maximum stress  (σmax,  at 
y = ± H/2)  is still below the yield stress.  During 
this initial time interval the beam deflection is 
constant in time.  The moment formed by the 
stresses in the beam cross-section, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8: Stress distribution in the beam. 
 

F/L

q’’ 

0x= Lx=
)x(H )x(Z

)y,t(T

)T(yσ

y

ZH

t



Inverse Problems, Design and Optimization Symposium 
Rio de Janeiro, Brazil, 2004 
 

dyy)y,x,t(
W
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leads to a two-term expression that accounts for 
the elastic and plastic regions, 
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where 
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∆T(t, x, y) = T(t, x, y) – T∞ (19)
 
Equations (12) and (16) can be combined to 
pinpoint the location of the elastic-plastic 
interface, Z(t, x), for a specified beam profile 
H(x), and temperature distribution T(t, x, y). 
 Consider next the beam deflection in the y 
direction.  The local radius of curvature ρ of the 
deformed beam is (e.g., Refs. [10-11]), 
 

max2
)x,t(EZ)x,t(

σ
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As a first approximation, for small deflections the 
position of the neutral line [y = δ(x)] can be 
written as 
 

ρ
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In the absence of a plastic zone, the stress in the 
outer fibers (y = ± H/2) is 
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which must be used in Eq. (20).  On the other 
hand, when a plastic zone is present, the 
maximum stress is reached at the plastic-elastic 
interface, σmax = σy [T(Z/2)].  Equation (21) can 
be integrated twice to obtain the position of the 
neutral line.  The boundary conditions are 
 

δ = 0     at     x = 0   and   x = L         (23) 
 

The maximal deflection occurs in the midplane, 
 

δm = – δ(x = L/2)                      (24) 
 

 The amount of beam material is fixed, and, in 
view of the two-dimensional geometry of Fig. 7, 
the profile area is also fixed, 
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0
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We considered many profile shapes, e.g., Eq. (28) 
in the next section.  For every assumed shape, we 
calculated numerically the time evolution of the 
maximal deflection, δm(t).  The objective is to 
identify the shape for which δm is the smallest at a 
given t.  This shape is the most resistant to 
thermal attack. 
 
3.2. Heat Transfer Point of View 

The local beam temperature is known from 
Fourier analysis [12], under the assumption that 
the beam profile is slender so that conduction in 
the x direction is negligible: 
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The dimensionless variables are defined in the 
next section.  The infinite sum in the square 
brackets is important only in the beginning, and 
vanishes rapidly for t~  > 1.   
 
3.3. Combining Heat Transfer and Stiffness 
Requirements for Optimal Beam Profiles 

The numerical work was conducted in 
dimensionless terms by using the dimensionless 
variables: 
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To start with, we considered a family of beam 
shapes that are smooth and thicker in the middle, 
e.g., Fig. 7: 
 

[ ]m)x~1(x~CH~ −=  (28)
 
The shape parameters C and m are related through 
the size constraint (26).  The geometry is 
characterized by one shape parameter (m), which 
plays the role of degree of freedom, and by three 
construction parameters:  A~ , β~  and 

ref,y
~σ .  The 

calculation of )t~(~
mδ  is performed from t~  = 0 

until the elastic core disappears at a location x~ .  
The model constructed in the preceding section is 
not valid when the elastic core is absent. 
 The numerical example given in Fig. 9 shows 
that the deflection increases in accelerated fashion 
in time, and that 

m

~
δ  can be minimized by 

selecting the shape parameter m.  This is the key 
result:  the beam geometry can be selected in such 
a way that the beam as a whole is most resistant 
to thermal attack.  This is a result for how the 
whole beam performs—a global result—because 

m

~
δ  is a global feature.  All the strained fibers 
contribute to 

m

~
δ . 

The influence of shape on performance is 
described further in Fig. 10, where )t~(~

mδ  has 
been plotted for three m values.  Because the 
objective is to achieve the smallest m

~
δ , we 

conclude  that  the  best  shape  (m)  changes  as the  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9: The existence of an optimal shape at 
each time. 

time increases.  The intersecting )t~(~
mδ  curves 

mean that mopt decreases as t~  increases.  This 
decrease accelerates in time, as shown in Fig. 11.  
The same figure shows that the minimal mid-
plane deflection min,m

~
δ , which corresponds to the 

optimally changing shape mopt( t~ ), also 
accelerates in time.  If t~  denotes the prescribed 
life-time of the beam—the time in which it must 
withstand the thermal attack—then for every t~  
there exists an optimal beam shape. 
 Important in Figs. 10 and 11 are the short 
times, where deflections are small and 
comparable with deflections based on the 
assumption that thermal attack is absent.  In this 
limit there is a definite beam shape that is 
optimal.  This is also the limit in which the model 
constructed is valid. 
 
4. CONCLUSIONS 
 Multi-objective systems are numerous and 
manifold, and to address simultaneously their 
objectives calls for truly interdisciplinary 
research. In this paper, we illustrated the 
interdisciplinary approach by showing that shapes 
and structures of beams can be optimized to face 
thermal attack, and that magnet can be optimized 
to perform efficiently from both the magnetic and 
thermal points of view. Examples of optimized 
shapes were the beam profile and cross-sectional 
aspect ratio, and the magnet length and outer 
radius. Optimized internal structure was the 
arrangement of the cooling discs in the magnets. 
< 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10: Time evolution of the optimal shape. 
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Figure 11: Influence of the shape on minimum 
deflection. 
 
The optimal architecture of the multi-objective 
systems is a consequence of the competition 
between objectives. The work presented in this 
paper is fundamental and exploratory. More 
realistic models can be combined with the method 
outlined in this paper, in the pursuit of optimal 
architectures that serve more than one objective. 
Structures of greater complexity promise to 
benefit from the multidisciplinary approach 
advocated in this paper. 
 It is important not to confuse the method of 
constructal design with the blind optimization of 
every possible feature in a design that, if free, has 
an infinity of such features. We can consider 
design as flights of imagination. The difficulty is 
that flights of imagination translate into shorter 
and shorter leaps as structures become more 
complex. The challenge is to inspire flights of 
imagination early in the evolution of 
configuration, when the design is still nakedly 
simple.  Problems such as the configurations of 
Figs. 3 and 7 are significant leaps forward from 
the amorphous black box with which an all-
powerful code might start.  To sense where the 
optimization opportunities lie requires intuition.  
One of the objectives of good research is to 
improve intuition.  Constructal design efforts are 
oriented in that direction. 
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